Room temperature photoluminescence of BCT prepared by Complex Polymerization Method

F.V. Motta a,*, A.P.A. Marques b, J.W.M. Espinosa c, P.S. Pizani d, E. Longo a, J.A. Varela a

a LIEC, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, R. Francisco Degni, 14801-907 Araraquara-SP, Brazil
b LIEC, Departamento de Química, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, SP, Brazil
c Departamento de Engenharia de Produção, Universidade Federal de Goiás, 75704-020 Catalão, GO, Brazil
d Laboratório de Semicondutores, Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil

Article info

Article history:
Received 7 November 2008
Received in revised form 6 April 2009
Accepted 7 April 2009
Available online 11 April 2009

PACS:
77.84.Dy
64.60.Cn
81.40.Tv
78.55.Qr

Keywords:
Barium calcium titanate
Order–disorder transition
Optical properties
Photoluminescence

Abstract

It was used the Complex Polymerization Method to synthesize barium calcium titanate powders (BCT). Crystalline Ba0.8Ca0.2TiO3 perovskite-type phase could be identified by X-ray diffraction and confirmed by Raman spectroscopy in the powders heat treated at 600 °C. Inherent defects, linked to structural disorder, facilitate the photoluminescence emission. The photoluminescent emission peak maximum was around 533 nm (2.33 eV) for the Ba0.8Ca0.2TiO3. The photoluminescence process and the band emission energy photon showed dependence of both the structural order–disorder and the thermal treatment history. The results revealed that Ba0.8Ca0.2TiO3 (BCT20) is a highly promising candidate material for optical applications.

1. Introduction

The barium titanate (BaTiO3) perovskite, that is one ferroelectric material, has been extensively studied due several possible applications such as electronic and optical devices [1–4]. The substitution of Ba by Ca in the BaTiO3 perovskite results in an improvement of the stability of the piezoelectric properties, consequently the barium calcium titanate (Ba1–xCa xTiO3) solid solution has attracted great attention for use in the laser systems, electro-optic material for various photorefractive and holographic applications [5–8].

Ba1–xCa xTiO3 (BCT) has usually been prepared by the solid state reaction method. In the solid state reaction method the mixture of BaCO3, CaCO3 and TiO2 is heat treated at high temperatures for long times and requires two successive calcinations to get high solubility of Ca+2 in the BaTiO3 matrix [9–11]. It has been observed that Ba+2 replaces Ca+2 in Ba1–xCa xTiO3 to form tetragonal BCT solid solutions when x is less than ~0.23 [5,12]. Moreover, Cheng and Shen [12] obtained pure tetragonal phase for x ≤ 0.25 and mixture of phases for x in the range of 0.3–0.85. The synthesis by soft-chemical methods, as the Complex Polymerization Method (CPM), used to synthesize high pure BaTiO3 powders, occur at lower temperature that the solid state reaction method. The immobilization of the metal complexes in such rigid organic polymeric networks can reduce the metal segregation, thus ensuring the compositional homogeneity at the molecular scale [13,14].

Jastrabik et al. [8] reported the photoluminescence (PL) and optical absorption in the pure and Cr-doped Ba0.77Ca0.23TiO3 single crystals at temperatures of the 5–300 K in the 300–800 nm spectral. Interband excitation of pure BCT crystals at T ~ 350 nm results in the well-known visible wide-band emission with a maximum at ~552 nm (green) at 10 K. Photoluminescence property at room temperature occurs due to structural disorder existing in the perovskite system [15,16]. However, the system can not be fully disordered owing to present a minimal order in the structure. This means that there is an order–disorder rate which favors the PL phenomenon in the system. It has been demonstrated that a series of structurally disorder titanates synthesized by a soft-chemical process have shown intense photo-
luminescence (PL) at room temperature [17–19]. In such cases, a minimal order in the system is necessary for the material exhibit PL property at room temperature.

In previous PL studies, the analysis of X-ray absorption near-edge structure (XANES) spectra pointed out the coexistence of two types of environments for titanium atoms, namely, fivefold (TiO5) square–base pyramid or trigonal bipyramidal and sixfold coordination (TiO6) octahedron. The order parameter is related to the presence of TiO5 clusters, whereas the disorder is related to the presence of TiO6 clusters. It is believed that PL occurs due to interaction of TiO5–TiO6 clusters [20,21]. de Figueiredo et al. [22] observed the PL phenomenon in Ca0.95Sm0.05TiO3 (CT:Sm) only in disordered structure. Experimental observations suggest that PL emission of CT:Sm is related both to the TiO5–TiO6 and CaO11–CaO12 concentrations; consequently, depends on both the modifier lattice (Ca and Sm ions) and the former lattice (Ti ions) [22,23].

Considering that the CPM is efficient to promote produce structural order–disorder complexes oxides powders and few have has been reported about the property PL of the barium calcium titanate (BCT). This paper reports the synthesis and the structural effect of Ba0.8Ca0.2TiO3 powders in the conditions that favor the PL emission at room temperature.

2. Experimental detail

BCT20 was prepared by CPM [24,25]. In this synthesis, the titanium citrate was formed by dissolution of titanium (IV) isopropoxide in aqueous solutions of citric acid (CA). This solution was mixed in a stoichiometric molar proportion of 4:1 CA:titanium. The solution was homogenized under constant stirring at a temperature of ~80–90 ºC, pH ~1.5. After complete dissolution were added BaCO3 and CaCO3. Ammonium hydroxide was used to adjust the pH of the solution (pH 7–8). The molar ratio between barium, calcium and titanium cations was 0.80:0.20:1. After homogenization of this solution was added ethylene glycol to promote the polymerization.

After partial evaporation of the water, the polymeric resin was heat treated at 300 ºC (10 ºC/min) for 4 h, forming an expanded resin, constituted of partially pyrolyzed material. The resin became a dark-brown powder and was crystallized at several temperatures between 400 and 700 ºC for 2 h using a heating rate of 5 ºC/min.

BCT20 powders were characterized by X-ray diffraction (XRD) using Cu Kα radiation in order to determine the structural evolution and the lattice parameters a and c. The average crystallite diameter (D_{cryt}) was determined by XRD, from the (1 0 1) and (1 1 0) diffraction peaks of the BaTiO3 phase (2θ at around 31.5° and 31.6°, respectively), according to the Scherrer equation as described by Suryanarayana and Norton [26].

The Raman spectroscopy data were obtained at room temperature by a RFS/100/S Bruker FT-Raman equipment attached to a Nd:YAG laser promoting an excitation light of 1064 nm with spectral resolution of 4 cm$^{-1}$ and range of 0–1100 cm$^{-1}$.

The photoluminescence (PL) spectra of the BCT20 powders were collected with a U1000 Jobin-Yvon double monochromator coupled to cooled GaAs photomultiplier and a conventional photon counting system. The 488.0 nm exciting wavelength of an argon ion laser was used. The maximum output power of the laser was 20 mW. All measurements were taken at room temperature.

3. Results and discussion

Fig. 1 shows the XRD patterns of the BCT20 powders heat treated at different temperatures, from 400 to 700 ºC. In this figure, it is observed that the BCT20 heat treated at 400 ºC is disordered. The materials heat treated between 450 and 550 ºC present only broad diffraction reflections at 2θ ~ 24.3°, 26.7° and 34.7° referent to the barium titanium oxycarbonate, (Ba0.8Ca0.2)2Ti2O5·CO3 [27]. This barium titanium oxycarbonate is an intermediate metastable phase that disappears when the material is heat treated at 575 ºC, remaining only the reflections referent to Ba0.8Ca0.2TiO3 perovskite-type phase. These XRD patterns indicate that the powders samples heat treated at 575 ºC and higher temperatures are structurally ordered at long range.

The pure BaTiO3 (BT) ceramic shows a tetragonal phase as identified and indexed using the standard XRD data of the corresponding BCT20 powders [5,9]. The lattice parameters and the mean crystallite sizes were calculated from the peak positions displayed in Fig. 1. The ordered BCT20 calculated crystallite sizes were around of 17 nm. The lattice parameters a and c were obtained using the least square refinement from the REDE93 program. The lattice parameters a and c were around of 3.960(3) Å and 3.994(3) Å, respectively; similar to the values reported for Ba0.773Ca0.227TiO3 crystals ($a = 3.962 \text{ Å}$ and $c = 3.999 \text{ Å}$) [5].

Fig. 2. Spontaneous Raman spectra of BCT20 powders heat treated at (a) 400 ºC, (b) 500 ºC, (c) 550 ºC, (d) 575 ºC, (e) 600 ºC and (f) 700 ºC.
Fig. 2 depicts spontaneous Raman spectra of BCT20 powders recorded at the room temperature for samples calcined from 400–700 °C. The samples heat treated at 400 and 450 °C no present well-resolved sharp peaks in the Raman spectra, indicating that the material is structurally disordered at short range. The Raman spectra of powders heat treated between 500 and 575 °C exhibited a fluorescent-like background. The band around of 1061 cm$^{-1}$ (marked with a \bullet in Fig. 2) was attributed to the (Ba$_{0.8}$Ca$_{0.2}$)$_2$Ti$_2$O$_5$: CO$_3$ intermediate phase [14]. Bands of the intermediate phase disappear completely in the powders heat treated at 600 and 700 °C, agreeing with XRD data. These alterations were accompanied by appearance of five distinct broad bands referent to the BaTiO$_3$ P4 mm tetragonal phase: 726, 526, 304, 256 and 186 cm$^{-1}$ with its respective vibration modes A$_1$(LO$_2$), A$_1$(TO$_3$), E (TO), A$_1$(TO$_2$) and A$_1$(TO$_1$) (marked with a * in Fig. 2) [2,14]. The Raman peaks at 153 and 640 cm$^{-1}$ (marked with a # in Fig. 2) were attributed to the satellite peaks, according to Cho [2], however these peaks can be attributed too the BaTiO$_3$ hexagonal phase.

The photoluminescence spectra recorded at room temperature for BCT20 powders heat treated at 400–700 °C for 2 h (Fig. 3). BCT20 heat treated at 400–575 °C presented PL emission. The broad and intense band emission covering a large part of the visible spectra, from ~504 to 720 nm was observed for BCT20 powders. The best PL property with the band centered at 533 nm (2.33 eV) was for the sample heat treaded at 500 °C and 700 °C for 2 h. The system has a totally ordered structure (samples annealed at 600 and 700 °C), the PL emission is not observed.

This profile of the emission band is typical of a multiphonon process, i.e. a system in which relaxation occurs by several paths, involving the participation of numerous states within the band gap of the material [20]. This behavior is related to the structural disorder of BCT20 and indicates the presence of additional electronic levels in the forbidden band gap of the material.

The complex PL band spectra may be due to several components and generally can be deconvoluted in individual components. The spectrum is deconvoluted based on the nature of the process governing each component. The luminescence process is generally described by a Gaussian line broadening mechanism in which case, the luminescence intensity can be expressed in terms of a Gaussian (amplitude version) line-shape function and can be written by the following equation:

$$I(h\nu) = I_0 + \sum_{i=1}^{n} A_i \exp \left[- \frac{(h\nu - E_0)^2}{2\sigma_i^2} \right].$$

where $h\nu$ is the energy of the radiation emitted, I_0 is the offset intensity, A_i is the amplitude of each component, E_0 is the energy of each component in which the intensity is maximum, and σ_i is the standard derivation for each component (FWHM) [28].

In this sense, to have a better understanding of the PL properties and its dependence on the structural order–disorder of the lattice, the PL curves were analyzed using a deconvolution program of PickFit [29]. We believe that the PL curves shown in Fig. 3 are composed by six PL components, here named blue–green component (~ 504 nm), green component (~ 532 nm), yellow component (~ 580 nm), orange component (~ 619 nm) and red component (maximum below 662 and 728 nm) in allusion to the region where the maxima of component appears. Each color represents different types of electronic transition and is linked to a specific structural arrangement. The features extracted from deconvolution curves and the areas under the curve of respective transitions are listed in Table 1 and illustrated in Fig. 4. The PL deconvolution (Fig. 3) shows the BCT20 disordered to ordered structure changing with the annealing increase, favoring the green light emission (smaller wavelength) for higher energies.

In the structure perovskite-type the lattice former titanium is at the center of the cube, surrounded by six oxygens that occupy the middle of the faces, in a regular octahedral configuration. However, the structure before of get its ideal configuration (totally ordered) is a mixture of TiO$_6$–TiO$_5$ clusters intercalated by Ba and Ca atoms. The higher the heat treatment temperature, the more frequent the TiO$_6$ conformation and the more ordered the structure. The red component decrease with the higher of treatment temperature (ordered structural) and the green component increase. According XRD results the BCT20 powders are ordered annealed at 600 and 700 °C. The ordered powders where only TiO$_6$ clusters tend to exist does not allow the creation of point defects and do not presents PL emission at room temperature [22]. Similar to the CT:Sm studied by de Figueiredo et al. [22], the compound with intermediary range disorder (500 °C) presented intense PL emission while compared to the compound disordered (400 and 450 °C) and the ordered compound no PL property was showed.

X-ray Absorption Near Edge Structure (XANES) experimental results [30] pointed that the oxygen vacancies in titanates can occur in three different charge states: the [TiO$_6$: V$_0$] complex states, which is neutral relative and presents two electrons paired, the singly ionized [TiO$_5$: V$_0$] complex state, that has one electron despaired, and the doubly positively charged [TiO$_3$: V$_0$] complex state, which did not trap any electrons.

Before donor excitation, a hole in the acceptor and an electron in a donor are created, according to equations using Kröger–Vink notation [31]:

![Fig. 3. Room temperature PL spectra of BCT20 powders annealed at (a) 400 °C, (b) 450 °C, (c) 500 °C, (d) 550 °C, (e) 575 °C, (f) 600 °C and (g) 700 °C, obtained with excitation at 488 nm. Deconvolution of PL curve fitted for the samples annealed at 400 °C, 450 °C, 500 °C, and 550 °C.](image-url)
The present work shows that the emission process follows many valid hypotheses presented in the literature. After the photon excitation, the recombination and decay of charged electrons occur as proposed in Eqs. (2)–(4) and are divided into intrinsic defects. These intrinsic defects, linked to structural disorder, facilitate the main emission process to PL. Disorder in solids provokes degeneracy and destabilization in the localized states of the atoms acting as electron-hole pairs and supporting the broad PL band phenomena and electronic levels are fundamental to understanding the order–disorder process in the solid state. These optical properties exhibited by disordered BCT20 suggest that this material is a highly promising candidate for photoluminescent applications.

Acknowledgements

The authors gratefully acknowledge the financial support of the Brazilian research financing institutions: CAPES, CNPq and FAPESP-CEPID.

References