Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles

CMDMC-LIEC-DQ-UFSCar, São Carlos-SP, CEP 13565-905, Brazil
IQ-UNESP-Araçatuba-SP, CEP 14800-900, Brazil
LSI-Depto. de Física-UFPR, Curitiba-PR, CEP 81531-990, Brazil

Received 2 December 2001; received in revised form 14 May 2002; accepted 25 May 2002

Abstract

Structural and morphological studies in pure and Ce-doped tin dioxide nanoparticles with high stability against particle growth were performed in samples, obtained using the polymeric precursor method and prepared at different annealing temperatures. A Ce-rich surface layer was used to control the particle size and stabilize SnO₂ against particle growth. The formation of this segregated layer can contribute to a decreased surface energy, acting in the driving force, or reducing the surface mobility. Only the cassiterite SnO₂ phase was observed below 1000 °C and a secondary phase (CeO₂) was observed for the Ce-doped SnO₂ at temperatures higher than 1000 °C, when de-mixing process occurs. The evolution of crystallite size, microstrain and morphology of the nanoparticles with annealing temperatures was investigated by X-ray diffraction (XRD), associated to Rietveld refinements, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).

Keywords: SnO₂; Powders-chemical preparation; X-ray methods; Precursors-organic

1. Introduction

The development of electrical and electronic devices with nanometric dimensions is a great challenge for technological applications. The knowledge of microstructural properties of nanostructured semiconductor oxides has a fundamental role in the understanding and development of new electronic devices.

Several structural and scientific phenomena in Materials Science are directly related to particle size. In some cases, as in catalyst materials and gas sensor devices, it is desirable to produce materials with nanometric-scale structures to obtain and improve some specific properties.

In general, the reduction of the particle growth rate at high temperatures can be controlled using additives or, likewise, by different preparation methods, mainly the sol-gel for being a simple and low cost method.

Recently, we obtained nanostructured materials with high stability against particle growth using a metastable solid solution. The particle growth is dependent of the particle boundary motion. The particle boundary velocity, \(V_b \), may be expressed as,

\[
V_b = M_b F_b
\]

where \(V_b \) is proportional to the driving force for boundary migration, \(F_b \), applied to it, and particle boundary mobility, \(M_b \), which depends on the mechanism of diffusion. Thus, there are two distinct ways used for slow down the particle growth, one by the reduction of \(F_b \) and other by the reduction of particle boundary mobility.

Several authors controlled the particle growth through the formation of an external segregated oxide layer. It is known that the solute drag causes a decrease in particle mobility. The formation of this segregated layer can contribute to a decreased surface energy, acting on the driving force, or reducing the surface mobility. In either
case, it contributes to decrease the particle boundary velocity.

In this paper, pure and Ce-doped tin dioxide nanoparticles were synthesized by the polymeric precursor method. We analyzed the influence of cerium oxide on the microstructure and segregation against particle growth. The evolution of the samples at different annealing temperatures was studied by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).

2. Experimental

2.1. Preparation of nanoparticles

Pure and Ce-doped tin dioxide nanoparticles were prepared by the polymeric precursor method, based on the Pechini method,5 using tin citrate aqueous solution, prepared from SnCl\textsubscript{2}.2H\textsubscript{2}O (Mallinckrodt Baker, USA, purity > 99.9%) and citric acid (E. Merck, Germany, purity > 99.9%). The undoped tin polymer was obtained reacting the tin citrate with ethylene glycol, at a 1:1 mass ratio, in acid solution (HNO\textsubscript{3} conc.). In the case of the doped polymer, 5% in mol Ce4+, using Ce(N-O\textsubscript{3}).6H\textsubscript{2}O (Sigma, purity > 99.9%), was dissolved in the tin citrate solution, following the same procedure. In both cases the temperature was elevated up to approximately 120 °C to eliminate NO\textsubscript{x} and heat-treated at 300 °C for 2 h for the pre-pyrolysis of the resin. The resulting polymer was treated at 400 °C for 4 h to allow for the complete oxidation of the organic precursor. Soon afterwards all materials were calcinated at several temperatures for 2 h to promote the crystallization of the SnO\textsubscript{2} phase. Fig. 1 shows the main steps required for the synthesis of the pure and Ce-doped tin dioxide nanoparticles.

2.2. Structural characterization

X-ray diffraction was carried out on a Siemens D-5000 instrument, in the Bragg 0-2θ geometry, equipped with a graphite monochromator and Cu K\textsubscript{α} radiation (λ = 1.5418 Å), operating with voltage of 40 kV and emission current of 40 mA. Data were obtained in step times of 1.0 s and step sizes of 0.030° (2θ) from 20 to 60°. In the case of the routine for the Rietveld analysis, a scanning from 20 to 110° with step times of 8.0 s and step sizes of 0.020° was adapted.

The Rietveld refinement6 was used for the crystal structure and microstructure analyses (crystallite size and microstrain), with the DBWS-9807a program (an

![Fig. 1. The main steps for the synthesis of the pure (a) and Ce-doped (b) tin dioxide nanoparticles.](image-url)
upgrade of the DBWS-9411 program. The Thompson–Cox–Hastings function modified by Young (TCHZ) was used for the diffraction profile fitting. The crystallite size and microstrain were computed using a model based on the Young–Desai method. A tungsten carbide sample, previously characterized by the Rietveld method, was used as a standard to measure instrumental line broadening.

For the TEM/HRTEM analyses, a drop of the nanopowder suspension was ultrasonically dispersed in ethanol and deposited on a carbon-covered nickel grid. TEM observations were performed using a Philips CM 200 microscope operating at 200 kV. The X-ray photoelectron spectra were taken using a commercial VG ESCA 3000 system. The base pressure of the analysis chamber was in the low 10⁻¹ mbar range. The spectra were collected using Mg Kα radiation and the overall energy resolution was about 0.8 eV. The concentrations of the surface elements were calculated using the system's database after subtracting the background counts.

3. Results and discussion

The X-ray diffractograms of the undoped SnO₂ displayed only the tetragonal rutile structure (cassiterite) for all the nanoparticles treated in the temperature range from 550 to 1100 °C. These results are in agreement with other works. The results of X-ray diffraction, shown in Fig. 2, presented the tetragonal structure for Ce-doped SnO₂, but a second phase (CeO₂) was observed at temperatures above 1000 °C.

In both cases, pure and Ce-doped SnO₂ nanoparticles, the crystallite sizes increase with the increasing of the heat treatment temperature, while the microstrain and lattice parameter measurements (c/a ratio) decrease, as can be observed in Figs. 3 and 4, respectively. However, as already reported, the growth rate of the Ce-doped SnO₂ is smaller than the undoped material. The crystallite size (Fig. 2), in both cases, increases with increasing treatment temperature, though the

![Fig. 2. X-ray diffractograms of the nanostructured Ce-doped SnO₂.](image)

![Fig. 3. Average crystallite size and microstrain as a function of heat treatment temperature, for the obtained nanoparticles.](image)

![Fig. 4. The lattice parameter (c/a ratio) for pure and Ce-doped tin dioxide nanoparticles.](image)

Table 1: Convergence parameters of the Rietveld refinement

<table>
<thead>
<tr>
<th>Sample</th>
<th>R_B (%)</th>
<th>R_Q (%)</th>
<th>R_P (%)</th>
<th>R_wp (%)</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>P550</td>
<td>1.56</td>
<td>5.71</td>
<td>5.88</td>
<td>7.82</td>
<td>1.37</td>
</tr>
<tr>
<td>P700</td>
<td>1.81</td>
<td>5.70</td>
<td>5.78</td>
<td>8.21</td>
<td>1.44</td>
</tr>
<tr>
<td>P800</td>
<td>1.54</td>
<td>5.71</td>
<td>5.70</td>
<td>8.37</td>
<td>1.46</td>
</tr>
<tr>
<td>P900</td>
<td>1.92</td>
<td>5.67</td>
<td>5.89</td>
<td>8.50</td>
<td>1.50</td>
</tr>
<tr>
<td>P1000</td>
<td>1.67</td>
<td>5.82</td>
<td>5.12</td>
<td>7.33</td>
<td>1.25</td>
</tr>
<tr>
<td>P1100</td>
<td>2.97</td>
<td>5.61</td>
<td>5.70</td>
<td>7.91</td>
<td>1.40</td>
</tr>
<tr>
<td>Ce550</td>
<td>3.01</td>
<td>8.36</td>
<td>7.64</td>
<td>9.91</td>
<td>1.18</td>
</tr>
<tr>
<td>Ce700</td>
<td>3.49</td>
<td>8.55</td>
<td>7.41</td>
<td>9.81</td>
<td>1.14</td>
</tr>
<tr>
<td>Ce800</td>
<td>3.43</td>
<td>10.23</td>
<td>7.76</td>
<td>10.23</td>
<td>1.20</td>
</tr>
<tr>
<td>Ce900</td>
<td>3.08</td>
<td>8.37</td>
<td>7.59</td>
<td>10.16</td>
<td>1.21</td>
</tr>
<tr>
<td>Ce1000</td>
<td>2.68</td>
<td>5.80</td>
<td>6.55</td>
<td>8.77</td>
<td>1.51</td>
</tr>
<tr>
<td>Ce1100</td>
<td>2.53</td>
<td>8.74</td>
<td>7.22</td>
<td>10.23</td>
<td>1.17</td>
</tr>
</tbody>
</table>

* The samples’ codes are described as it follows: P = pure SnO₂; Ce = Ce-doped SnO₂ with 5% in mol of Ce and 550–1100 represent the treatment temperatures. The definitions for the R_B, R_Q, R_P, R_wp, and S were shown in Ref. 10.
increase for Ce-doped is slow. It exhibit a growth rate of \(\sim 0.7 \times 10^{-2} \text{ nm}/\text{C h} \) in the 500–1000 °C range, while for the pure SnO\(_2\) particles, at the same temperature range, the crystallite size displayed a faster increase (\(\sim 4.8 \times 10^{-2} \text{ nm}/\text{C h} \)). These results show that Ce can be used to control particle size and stabilize SnO\(_2\) against particle growth at that temperature range.

To understand the effect of dopant on particle growth control and microstructure, a Rietveld refinement study was performed in the pure and Ce-doped SnO\(_2\), as a function of the heat treatment temperature. The convergence parameters of the Rietveld refinement and the results for microstructural characterization of the pure and Ce-doped SnO\(_2\) nanopowders are displayed in Tables 1 and 2, respectively. In Fig. 5 are presented the fittings that show the adjustment of the DRX curves for the Rietveld method.

Fig. 6 shows low magnification bright field (BF) transmission electron microscopy (TEM) images of the pure SnO\(_2\) (Fig. 6a) and Ce-doped SnO\(_2\) nanoparticles (Fig. 6b). The TEM reveals that the doped materials present smaller particle sizes than the pure material, but in both cases, uniform, well-crystallized nanoparticles can be observed. These results are similar to the results elsewhere\(^2\),\(^3\) previously reported.

Fig. 7a shows the X-ray photoemission spectroscopy (XPS) results ([Ce]/[Sn]) for the Ce-doped SnO\(_2\) samples prepared at different temperatures. The [Ce]/[Sn] con-

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Volume (Å(^3))</th>
<th>Density (g/cm(^3))</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P550</td>
<td>71.482</td>
<td>6.999</td>
<td>4.736406</td>
<td>3.186398</td>
<td></td>
</tr>
<tr>
<td>P700</td>
<td>71.502</td>
<td>6.997</td>
<td>4.737206</td>
<td>3.186219</td>
<td></td>
</tr>
<tr>
<td>P800</td>
<td>71.502</td>
<td>6.997</td>
<td>4.737185</td>
<td>3.186240</td>
<td></td>
</tr>
<tr>
<td>P900</td>
<td>71.502</td>
<td>6.997</td>
<td>4.737230</td>
<td>3.186178</td>
<td></td>
</tr>
<tr>
<td>P1000</td>
<td>71.497</td>
<td>6.998</td>
<td>4.737030</td>
<td>3.186211</td>
<td></td>
</tr>
<tr>
<td>P1100</td>
<td>71.502</td>
<td>6.997</td>
<td>4.737166</td>
<td>3.186270</td>
<td></td>
</tr>
<tr>
<td>Ce550</td>
<td>71.971</td>
<td>6.952</td>
<td>4.745285</td>
<td>3.196179</td>
<td></td>
</tr>
<tr>
<td>Ce700</td>
<td>71.861</td>
<td>6.962</td>
<td>4.745304</td>
<td>3.193726</td>
<td></td>
</tr>
<tr>
<td>Ce800</td>
<td>71.933</td>
<td>6.955</td>
<td>4.745295</td>
<td>3.194490</td>
<td></td>
</tr>
<tr>
<td>Ce900</td>
<td>71.857</td>
<td>6.963</td>
<td>4.743811</td>
<td>3.193105</td>
<td></td>
</tr>
<tr>
<td>Ce1000</td>
<td>71.792</td>
<td>6.969</td>
<td>4.742522</td>
<td>3.191971</td>
<td></td>
</tr>
<tr>
<td>Ce1100</td>
<td>71.578</td>
<td>6.990</td>
<td>4.738585</td>
<td>3.187732</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5. Adjustment of the DRX curves for the Rietveld method: (a) Ce-doped heat-treated at 550 °C for 2 h, (b) Ce-doped heat-treated at 1100 °C for 2 h, (c) pure SnO\(_2\) nanoparticles heat-treated at 550 °C for 2 h and (d) pure SnO\(_2\) heat-treated at 1100 °C for 2 h.
centration ratio grows up to 900 °C, after that it drastically decreases, as the annealing temperature rises. It is clear, from the XPS results, that a surface rich in Ce cations is formed during the heat treatment ($T < 900$ °C). However, for temperatures higher than 1000 °C, a de-mixing process occurs. These results are in agreement with the XRD data and show the formation of a segregation layer during the heat treatment.

Depero et al. working with X-TiO$_2$ systems, where $X=$Al, Ga, Nb and Ta, observed a linear correlation between $<\varepsilon^2>^{1/2}$ (microstrain) and $1/<d>$, where $<d>$ is the average crystallite size. They showed, for rutile phase, the existence of a straight line passing by the origin. Based on this assumption: If

$$<\varepsilon^2>^{1/2} <d> \alpha \frac{1}{<d>},$$

Consequently,

$$<Z_n^2>^{1/2} \alpha \frac{1}{<d>},$$

where $Z_n=n\varepsilon$ (n is the number of unit cells of the crystallite in a certain direction), and Z_n, in a single line Fourier analysis, one can assume the following gaussian distribution,

$$p(Z_n) = \frac{q}{\pi} \exp(-q^2Z_n^2),$$

in the which the full width at the half maximum of the gaussian distribution of Z_n ($1/q$) is inversely proportional to the average number of unit cells. This suggests that the microstrain existence is only due to the particle sizes.

In Fig. 8, can be observed a linear correlation between $<\varepsilon^2>^{1/2}$ and $1/<d>$ to Ce-doped nanoparticles. The inset in Fig. 8 shows a linear correlation between $<\varepsilon^2>^{1/2}, <d>$ and $1/<d>$ until 1000 °C, before the occurrence of the de-mixing process. This behavior was not observed for the pure SnO$_2$, thereby this indicates that the strain depends on the segregation and not on the average crystallite size.

These results suggest that a relaxation phenomenon occurs under the influence of temperature ($T < 1000$ °C), driving the Ce from the inner lattice sites towards the

Fig. 6. Bright field (BF) transmission electron microscopy (TEM) images of pure (a) and Ce-doped SnO$_2$ nanoparticles (b). Material heat-treated at 550 °C for 2 h.

Fig. 7. XPS results, [Ce]/[Sn] ratio, for the Ce-doped SnO$_2$ nanoparticles.
surface and resulting in a nonhomogeneous solid solution whose surface is richer in the foreign cation, that next undergoes the dopant segregation. A secondary phase (CeO₂) was observed for the Ce-doped SnO₂ at temperatures starting from 1000 °C, while only the cassiterite SnO₂ phase was observed below 1000 °C. Thus, at T > 1000 °C, a de-mixing process occurs, resulting in a two-phase (SnO₂ and CeO₂) nanostructured material. Fig. 9 shows a qualitative model to explain the transformation that the Ce-doped SnO₂ nanoparticles undergo with the increase at the temperatures with the increase of the temperature, the Ce-segregation phenomenon is predominant up to 900 °C. For temperatures higher than 1000 °C, a de-mixing process occurs, resulting in a two phase materials.

Pure and Ce-doped tin dioxide nanoparticles, with high stability against particle growth were obtained by the polymeric precursor method. Their microstructural and morphological analyses demonstrate that their characteristics enable than for application as gas sensor devices.

4. Conclusions

This synthesis procedure of nanostructured tin dioxide powders promotes high thermal stability against particle growth at temperatures below 1000 °C. This low particle growth rate was obtained by the introduction of Ce particles into the SnO₂ lattice. The Ce cations move toward the particle surface, with increasing temperature, decreasing the particle growth velocity, thereby achieving to control the initial particle sizes below 20 nm at T < 1000 °C.

The cell volumes, microstrains and c/a ratio of the Ce-doped, for all treatment temperatures, are greater than the values of the pure SnO₂ nanoparticles. These facts indicate that Ce⁴⁺ (0.92 Å of diameter) is substituting Sn⁴⁺ (0.71 Å of diameter) in the crystallite. At high

Fig. 8. Correlation between microstrain and average crystallite size for pure and Ce-doped tin dioxide nanoparticles.

Fig. 9. The Ce-rich surface layer (segregation) formation followed by the de-mixing process.
temperatures, the c/a ratio and microstrain values of the Ce-doped are similar to those of the pure SnO₂ nanoparticles.

A Ce-rich surface layer is responsible for the particle growth inhibition and for the increase of the thermal stability of the nanometric particles against growth. The formation of this layer can contribute toward a decreased surface energy or a reduced surface mobility. In either case, it contributes to decrease the particle boundary velocity. This phenomenon is predominant up to 900 °C.

This methodology of preparation can be applied to modify the particle surface and then control the growth rate of the particles that takes place as the temperature rises. These nanostructured materials can be applied as gas sensor presenting an improved performance.

Acknowledgements

The authors acknowledge Brazilian support agencies, FAPESP, CNPq, FINEP and CAPES for financial support.

References